Optimal Densification for Fast and Accurate Minwise Hashing
نویسنده
چکیده
Minwise hashing is a fundamental and one of the most successful hashing algorithm in the literature. Recent advances based on the idea of densification (Shrivastava & Li, 2014a;c) have shown that it is possible to compute k minwise hashes, of a vector with d nonzeros, in mere (d + k) computations, a significant improvement over the classical O(dk). These advances have led to an algorithmic improvement in the query complexity of traditional indexing algorithms based on minwise hashing. Unfortunately, the variance of the current densification techniques is unnecessarily high, which leads to significantly poor accuracy compared to vanilla minwise hashing, especially when the data is sparse. In this paper, we provide a novel densification scheme which relies on carefully tailored 2-universal hashes. We show that the proposed scheme is variance-optimal, and without losing the runtime efficiency, it is significantly more accurate than existing densification techniques. As a result, we obtain a significantly efficient hashing scheme which has the same variance and collision probability as minwise hashing. Experimental evaluations on real sparse and highdimensional datasets validate our claims. We believe that given the significant advantages, our method will replace minwise hashing implementations in practice.
منابع مشابه
Improved Densification of One Permutation Hashing
The existing work on densification of one permutation hashing [24] reduces the query processing cost of the (K,L)-parameterized Locality Sensitive Hashing (LSH) algorithm with minwise hashing, from O(dKL) to merely O(d + KL), where d is the number of nonzeros of the data vector, K is the number of hashes in each hash table, and L is the number of hash tables. While that is a substantial improve...
متن کاملb-Bit Minwise Hashing in Practice: Large-Scale Batch and Online Learning and Using GPUs for Fast Preprocessing with Simple Hash Functions
ABSTRACT Minwise hashing is a standard technique in the context of search for approximating set similarities. The recent work [27] demonstrated a potential use of b-bit minwise hashing [26] for batch learning on large data. However, several critical issues must be tackled before one can apply b-bit minwise hashing to the volumes of data often used industrial applications, especially in the cont...
متن کاملb-Bit Minwise Hashing for Estimating Three-Way Similarities
Computing1 two-way and multi-way set similarities is a fundamental problem. This study focuses on estimating 3-way resemblance (Jaccard similarity) using b-bit minwise hashing. While traditional minwise hashing methods store each hashed value using 64 bits, b-bit minwise hashing only stores the lowest b bits (where b ≥ 2 for 3-way). The extension to 3-way similarity from the prior work on 2-way...
متن کاملb-Bit Minwise Hashing for Large-Scale Learning
Abstract Minwise hashing is a standard technique in the context of search for efficiently computing set similarities. The recent development of b-bit minwise hashing provides a substantial improvement by storing only the lowest b bits of each hashed value. In this paper, we demonstrate that b-bit minwise hashing can be naturally integrated with linear learning algorithms such as linear SVM and ...
متن کاملAccurate Estimators for Improving Minwise Hashing and b-Bit Minwise Hashing
Minwise hashing is the standard technique in the context of search and databases for efficiently estimating set (e.g., high-dimensional 0/1 vector) similarities. Recently, b-bit minwise hashing was proposed which significantly improves upon the original minwise hashing in practice by storing only the lowest b bits of each hashed value, as opposed to using 64 bits. b-bit hashing is particularly ...
متن کامل